Characterization of the Structural and Surface Properties of a Synthesized Hydrous Hollandite by Gaseous Molecular Adsorption

Z.-M. Wang,^{*,†} S. Tezuka, and H. Kanoh^{*,‡}

Separation Technology Group, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu-shi, Kagawa 761-0395, Japan

Received September 21, 2000. Revised Manuscript Received December 4, 2000

The structural and surface properties of a hydrous hollandite-type manganese oxide (H-Hol) were examined by adsorption using different gases with molecular diameters below 0.4 nm. N₂, O₂, Ar, CO, and CO₂ with diameters above 0.33 nm are excluded from the tunnel structure of H-Hol, whereas H₂O and NH₃ with diameters below 0.265 nm can be inserted into the structure. Disagreements were observed for the first and second run adsorption isotherms of H_2O and NH_3 , indicating that there is a strong interaction contributing to H_2O and NH₃ adsorption. Insertion of NH₃ into the tunnels of H-Hol is a very slow process; the rate-determining step is that of insertion into the inner H⁺ sites. H⁺ sites on H–Hol play an important role in both NH₃ and H₂O adsorption. Adsorption and FT-IR results demonstrate that stepwise dehydration decreases the H^+ sites available for NH_3 adsorption, some but not all of which are recoverable by rehydration.

Introduction

Microporous manganese oxides are one group of crystalline transition-metal oxides containing intratunnel or layered structures whose crystalline pore dimensions are estimated to be below 1 nm. Because of their potential application in rechargeable batteries,^{1–6} ionsieving sorption,^{7–12} chemical sensors,^{13,14} and catalysis,^{6,15–19} they have been actively studied in recent years. As one of the representative porous manganese

- 1992, 27, 221
- (3) Shen, Y. F.; Zerger, R. P.; DeGuzman, R. N.; Suib, S. L.;
 McCurdy, L.; Potter, D. I.; O'Young, C. L. Science 1993, 260, 511.
 (4) Bach, S.; Pereira-Ramos, J. P.; Baffier, N. Solid State Ionics
- 1995, 80, 151. (5) Kanoh, H.; Tang, W.; Makita, Y.; Ooi, K. Langmuir 1997, 13,
- 6845. (6) Brock, S. L.; Duan, N.; Tian, Z.; Giraldo, O.; Zhou, H.; Suib, S.
- L. Chem. Mater. 1998, 10, 2619.
 - (7) Tsuji, M.; Abe, M. Bull. Solvent Extr. Ion Exch. 1984, 2, 253.
 - (8) Tsuji, M.; Abe, M. Bull. Chem. Soc. Jpn. 1985, 58, 1109. (9) Clearfield, A. Chem. Rev. 1988, 88, 125.

 - (10) Ooi, K.; Miyai, Y.; Sakakihara, J. Langmuir 1991, 7, 1167. (11) Tsuji, M.; Komarneni, S.; Tamura, Y.; Abe, M. Mater. Res. Bull.
- 1992, 27, 741
- (12) Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Chem. Mater. 1995, 7, 148
- (13) Miyazaki, K.; Xu, C.-N.; Hieda, M. J. Electrochem. Soc. 1994, 141, L35.
- (14) Miyazaki, K.; Hieda, M.; Kato, T. Ind. Eng. Chem. Res. 1997, 36. 88.
- (15) Nitta, M. Appl. Catal. 1984, 9, 151.
 (16) Cabrera, A. L.; Maple, M. B.; Arrhenius, G. Appl. Catal. 1990, 64, 309.
- (17) Cao, H.; Suib, S. L. J. Am. Chem. Soc. 1994, 116, 5334.
- (18) Lin, J.-C.; Chen, J.; Suib, S. L.; Cutlip, M. M.; Freihaut, J. D.
 J. Catal. **1996**, *161*, 659.
 (19) Zhou, H.; Wang, J. Y.; Chen, X.; O'Young, C.-L.; Suib, S. L.
- Microporous Mesoporous Mater. 1998, 21, 315.

oxides, hollandite-type manganese oxides (Hol) have a (2×2) tunnel structure bordered by double chains of edge-shared MnO₆ octahedra.^{6,20} They can be either naturally occurring or artificially synthesized.⁶ Recently, Suib et al. have extensively studied the synthesis and structural and surface properties of hollandites and Cu²⁺-, Fe²⁺-, and Ni³⁺-substituting hollandites with various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), secondary electron microscopy (SEM), temperature-programmed desorption (TPD), and so on. $^{3,6,21-25}$ The electrochemical and ion-sieving properties of hollandites have also been widely studied for several decades.^{7-9,12} However, despite great expectations as a new type of molecular sieve, research reports on its gas adsorptivity are limited. Knowledge regarding its effective pore dimension available for gas probing has not been completely proven either.

Figure 1 shows a schematic projection of hollandite structure in the (ab) plane. One can take a rectangular unit cell with a common size for *a* and *b*, whose edges intersect every external corner of MnO₆ octahedra surrounding the (2×2) tunnel.^{21,22} By subtracting the thickness of the Mn layer from the interlayer space, the crystalline pore opening can be estimated as 0.46 nm. However, it is common knowledge that a crystalline pore opening is not always the same as the effective pore opening because the latter is influenced not only by

10.1021/cm0007609 CCC: \$20.00 © 2001 American Chemical Society Published on Web 01/16/2001

[†] Telephone: (+)81-87-869-3511. Fax: (+)81-87-869-3550. E-mail: zmwang@sniri.go.jp.

 [‡] E-mail: kano[®]sniri.go.jp.
 (1) Kanoh, H.; Ooi, K.; Miyai, Y.; Katoh, S. *Langmuir* **1991**, *7*, 1841.
 (2) Rossouw, M. H.; Liles, D. C.; Thackeray, M. M. *Mater. Res. Bull.*

⁽²⁰⁾ Turner, S.; Buseck, P. R. Science 1981, 212, 1027.
(21) De Guzman, R. N.; Shen, Y.-F.; Shaw, B. R.; Suib, S. L.;
O'Young, C.-L. Chem. Mater. 1993, 5, 1395.
(22) De Guzman, R. N.; Shen, Y.-F.; Neth, E. J.; Suib, S. L.;
O'Young, C.-L.; Levine, S.; Newsam, J. M. Chem. Mater. 1994, 6, 815.
(23) Wasserman, S. R.; Carrado, K. A.; Yuchs, S. E.; Shen, Y.-F.;
Cap. H.; Suib, S. L. Physica P 1095, 209, 674

Cao, H.; Suib, S. L. *Physica B* 1995, *208–209*, 674.
 (24) Yin, Y.-G.; Xu, W.-Q.; Suib, S. L.; O'Young, C.-L *Inorg. Chem.*

^{1995, 34, 4187.}

⁽²⁵⁾ Nicolas-Tolentino, E.; Tian, Z.-R.; Zhou, H.; Xia, G.; Suib, S. L. Chem. Mater. 1999, 11, 1733.

Unit cell: a = b = 0.981 nm, c = 0.286 nm

Figure 1. Projection of the (2×2) tunnel structure of hollandite-type manganese oxide in the (*ab*) plane.

accommodation of framework ions but also by the presence of intratunnel cations. For example, accommodation of intratunnel cations with ionic size from 0.07 (Li^+) to 0.16 nm $(Cs^+)^{12}$ in the one-dimensional tunnel of hollandite may restrict the accessibility of their tunnels to gaseous molecules. According to O'Young et al.,²⁶ the microporous structure of hollandite-type manganese oxides cannot be satisfactorily elucidated by lowtemperature argon adsorption. The best way to probe the pore size distribution of a microporous system is the molecular probing method using gas molecules with different dimensions.^{27,28} In a previous study, we reported that NH₃ can be inserted into the tunnel structure of a hydrous hollandite-type manganese oxide.²⁹ In the present study, we examined the micropore system of hollandite by adsorption using common molecules with molecular diameters below 0.4 nm. Emphasis has been given to adsorptivity of small NH₃ and H₂O molecules.

Experimental Section

Material and Characterization. To probe the microporous structure of Hol without the influence of cations, hydrous hollandite (H-Hol) was used in this research because the proton ionic size can be ignored. H-Hol was synthesized by the hydrothermal route reported by Thackeray et al.² Commercial powders of γ -MnOOH (Tosoh Co., Manganite) and Li₂-CO₃ (Wako Pure Chemical Industrial Ltd., high purity) were mixed in a crucible and calcined at 1073 K for 48 h to form a Li₂MnO₃ precursor. The Li₂MnO₃ precursor was then added to a 3 M sulfuric acid solution in a Teflon-sealed autoclave, allowing hydrothermal reaction at 363 K for 48 h. The H-Hol powders produced were dried at 343 K for one night and kept in a desiccator before further use. The chemical analysis result showed that the prepared product has a unit cell chemical formula of HMn₈O₁₆; the average atomic valence for Mn is 3.88. The X-ray diffraction (XRD) pattern of the prepared H-Hol was determined by a Rigaku RINT 1200 diffractometer from 10 to 70° at a scanning speed of 0.02°/min in a chamber with humidity and temperature control. The thermal gravimetry (TG) and differential thermal analysis (DTA) of the prepared H-Hol were carried out with a TG-DTA 2000 system (Mac

Science Co. Ltd.) at a ramp rate of 10 K/min. Commercial α-Al₂O₃ was used as a standard material for TG/DTA measurements.

Adsorption Measurement. The adsorption of N₂, O₂, Ar, CO, CO₂, H₂O, and NH₃ was carried out by a volumetric method using commercial volumetric apparatus (Autosorp-1 of Quanta-Chrom Co. or Belsorp 18 of Japan Bell Co.). The adsorption temperatures are 77 K for N₂, O₂, Ar, and CO, 195 K for CO₂, and a temperature in the range of 278–318 K for H₂O and NH₃. Prior to adsorption, the samples were evacuated under 1 mPa at 393 K (or 573 K) for 2 h. After completion of a first-run adsorption, H₂O or NH₃-adsorbed H-Hol was evacuated under 10 mPa at the adsorption temperature for at least 2 h and then subjected to a second-run adsorption at the same temperature. The amount of irreversible NH₃ and H₂O adsorption was obtained by subtracting the second-run adsorption isotherm from the first. The relationship of H₂O and NH₃ adsorption on H-Hol to pre-evacuation temperature (393, 473, or 573 K) was also examined. The NH_3 or H_2O adsorption on H₂O- or NH₃-preadsorbed H-Hol was carried out after evacuating the sample preadsorbed by H₂O for 2 h or NH₃ for 30 min at the same adsorption temperature. The equilibrium time for obtaining every point of adsorption isotherm is 300 s for NH₃ and 500 s for the other gases. Commercial gases with purities greater than 99.99% were used for adsorption measurements without further purification. H₂O was purified by the freeze-pump-thaw method before use.

FT-IR Spectroscopic Measurement. The NH₃ surface adspecies and the change of surface sites on H-Hol for NH3 adsorption were observed by FT-IR spectroscopy. A special quartz cell mounted with a pair of NaCl windows to allow penetration of an IR beam through the centers of the windows was connected to a vacuum line for sample pre-evacuation and introduction of gas without exposure to the atmosphere. Prior to measurements, H-Hol was pressed at 250 kPa to form a thin wafer of 1 cm diameter, which was placed in a quartz holder suspended by means of a Pt wire in the quartz cell. After evacuation at 393 K for 15 min (condition a) at the upper part of quartz cell, the H-Hol wafer was shifted down to the measurement position in a room temperature environment (295-297 K). NH₃ was then introduced and maintained at equilibrium pressures of 1.0 (condition b) and 3.6 kPa (condition c) for 15 min each. After the NH₃-adsorbed H-Hol was successively evacuated at 393 (condition d) and 473 K (condition e) for 15 min each, the sample was subjected to another NH₃ adsorption at an equilibrium pressure of 3.2 kPa for 15 min (condition f) and then evacuated at 473 (condition g) and 573 K (condition h), for 15 min each. After that, NH₃ adsorption at room temperature and desorption at 573 K were repeated four times with an NH₃ equilibrium pressure of 1.6, 1.1, 1.2, or 1.0 kPa and at an adsorption time of 15 min each (Conditions i, j, k, l, m, n, o, and p sequentially represent each of the adsorption and desorption steps). Finally, the sample was evacuated at 573 K for 25 min (condition q), and at 773 (condition r) and 973 K (condition s) for 10 min each. The IR absorbance corresponding to each of the above steps was collected from 32 scans at a resolution of 2 cm⁻¹. NH₃ gas of 99.999% purity was used for IR measurements after further purification by a freeze-pump-thaw method.

Results and Discussion

Sample Characterization and Adsorption of Various Gaseous Molecules on H-Hol. XRD measurements confirm that the prepared H-Hol has a structure similar to natural cryptomelane,^{30,31} having a tetragonal unit cell of a = b = 0.981 nm and c = 0.286nm (Figure 1). Figure 2 shows the change in XRD patterns of the prepared H-Hol after evacuation at

⁽²⁶⁾ O'Young, C.-L.; Sawicki, R. A.; Suib, S. L. Microporous Mater. **1997**, *11*, 1.

⁽²⁷⁾ Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: London, 1982.

⁽²⁸⁾ Rouquerol, F.; Rouquerol, J.; Sing, K. S. W. Adsorption by Powders & Porous Solid; Academic Press: San Diego, 1999.
(29) Tezuka, S.; Wang, Z.-M.; Ooi, K.; Kanoh, H. Adsorption Science, & Technology; Do, D. D., Ed.; World Scientific: Singapore, 2000; pp 319-323.

⁽³⁰⁾ JCPDS-ICDD Powder Diffraction File No. 20-908.

⁽³¹⁾ Burns, R. G.; Burns, V. M. Manganese Dioxide Symposium; Schumm, B., Jr., Joseph, H. M., Kozawa, A., Eds.; I. C. MnO₂ Sample Office: Cleveland, 1981; pp 97–112.

Figure 2. XRD patterns of (a) as-prepared H–Hol and those after evacuation for 2 h at (b) 373, (c) 473, (d) 573, (e) 673, and (f) 773 K.

Figure 3. TG/DTA curves of the as-prepared H–Hol. Condition: ramp rate, 10 K/min; curtain gas, air (100 mL/min).

various temperatures for 2 h. The prepared H-Hol basically resists temperature-induced changes up to and including 673 K although the diffraction peaks were broader and of less intensity with evacuation at 673 K. Dehydration at 773 K leads to the transformation of hollandite to an α -Mn₂O₃ crystal. The TG/DTA curves of the as-prepared H-Hol in Figure 3 show the result corresponding to the XRD pattern changes in Figure 2, giving a gradual dehydration until 673 K before the first endothermic peak due to the crystal transformation to α -Mn₂O₃. The second crystal transformation from α -Mn₂O₃ to Mn₃O₄ gives rise to a second step in the TG curve and a great endothermic peak in the DTA curve at around 1200 K. The extent of dehydration, 6.2 wt %, between 303 and 673 K is much greater than that released by detachment of the H⁺ contents in H-Hol (\sim 1.3 wt %), indicating that one part of water can be

Figure 4. Adsorption isotherms of N_2 (\bigcirc), O_2 (\odot), Ar (\blacktriangle), and CO (\triangle) at 77 K, CO₂ (\blacktriangledown) at 195 K, NH₃ first run (\blacksquare), NH₃ second run (\Box), and the difference between first and second runs (\Box) at 298 K, and H₂O first (\blacklozenge) and second (\diamondsuit) runs at 298 K, and CO₂ desorption isotherm at 195 K (\bigtriangledown).

retained on the surface of H–Hol until high temperature.

Figure 4 shows the adsorption isotherms of Ar and CO in comparison with those of N₂ and O₂ at 77 K, CO₂ adsorption isotherm at 195 K, the first- and second-run adsorption isotherms of H₂O and NH₃ at 298 K, and an irreversible adsorption isotherm of NH3 at 298 K on H-Hol. All the adsorption isotherms except that of NH₃ show typical type II shapes, which are characteristic of multilayer condensation on a flat surface.²⁷ No hysteresis was observed in the desorption branches of Ar, CO, N_2 , and O_2 (not shown for clarity), indicating that no mesopores were present as probed by these molecules in H-Hol. However, a slight desorption hysteresis became evident for CO_2 having a smaller molecular diameter (0.33 nm³⁷). This desorption hysteresis persists to the lower P/P_0 value ($P/P_0 < 0.1$), demonstrating the existence of activated adsorption and stronger inclusion of CO₂ in the micropores of H-Hol. The first-run adsorption isotherm of NH₃ showed a sharp uprising at $P/P_0 < 0.01$ and a gradual increase after $P/P_0 = 0.01$. The sequence of adsorption amount at $P/P_0 = 0.3$ on H-Hol is NH₃ (first-run) > H₂O (first-run) > O₂ > N₂ = $Ar > CO = CO_2$. NH₃ and H₂O adsorption amounts are 2-3-fold greater than those of other gases. The disagreement between the first- and the second-run adsorption of NH₃ and H₂O implies the existence of a strong interaction of NH₃ and H₂O with the surface of H–Hol. Formation of NH₄⁺ by NH₃ adsorption²⁹ leads to a greatly enhanced irreversible adsorption at low relative pressure. A comparatively slight irreversible H₂O adsorption is ascribed to either the stronger H-bond interaction or the possible formation of H₃O⁺ species, which have been confirmed from the lattice expansion phenomenon of H-Hol after H₂O adsorption by XRD measurements. To make parallel comparisons, the Brunauer-Emmett-Teller (BET) equation was applied for all isotherms to calculate the specific surface areas, S_{BET} , despite possible involvement of chemisorption in case of NH_3 and H_2O . As shown in Table 1, the S_{BET} values from Ar, CO, CO₂, N₂, and O₂ adsorption are very similar to one another but smaller or much smaller than

Table 1. Surface Area of H-Hol Calculated from Adsorption of Each Gas

adsorbate	evacuation T/K	d⁄nm	adsorption T/K	$S_{\rm BET}/m^2/g$	$S_{\rm t,total}$ ^a /m ² /g	$S_{\rm t,ext}a/m^2/g$	S _{t,int} ^a /m ² /g
N_2	393	0.364	77	73	68	56	12
	573		77	79			
O_2	573	0.346	77	71	nd	nd	nd
Ar	573	0.340	77	79	nd	nd	nd
CO	573	0.376	77	67	nd	nd	nd
CO_2	573	0.330	195	64	nd	nd	nd
H ₂ O (first run)	393	0.265	298	95	nd	nd	nd
NH ₃ (first run)	393	0.26	298	161	nd	nd	nd

^{*a*} nd: Not determined.

Figure 5. (a) First- and (b) second-run NH_3 adsorption isotherms and (c) first- and (d) second-run H_2O adsorption isotherms on H–Hol at 298 K after preevacuation at 393 (\bullet), 473 (\blacksquare), and 573 K (\blacktriangle). Unfilled symbols represent the desorption branch of the adsorption with the same type of symbol.

those from H₂O (first-run) or NH₃ (first-run) adsorption. By analyzing the adsorption isotherms using a de Boer *t*-plot,³² it is possible to know the internal and external surface areas. On the basis of a standard N₂ adsorption isotherm on nonporous alumina,^{27,32} we obtained from the N₂ adsorption isotherm the total, the external, and the internal surface areas, denoted as $S_{t,total}$, $S_{t,ext}$, $S_{t,int}$, respectively. As shown in Table 1, the $S_{t,ext}$ values from N_2 adsorption are very close to those of $S_{t,total}$ and S_{BET} values. It thus follows that not only N₂ but also O₂, Ar, CO, and CO₂ are excluded from the microporous tunnels of H-Hol. The greater S_{BET} values from NH₃ and H₂O adsorption demonstrate that the two molecules can be inserted into the tunnel structure although it is hard for the inserted NH₃ and H₂O to be desorbed because of strong localization. Although H–Hol has a crystalline pore opening of 0.46 nm, its effective pore opening must be less than 0.33 nm (the dynamic diameter, d, of CO_2^{37}) and close to 0.265 nm (the *d* value of H_2O^{37}).

Relationship of NH₃ and H₂O Adsorption with the Extent of Dehydration of H–Hol. Figure 5 shows the first- and second-run adsorption isotherms of NH₃

(32) Lippens, B. C.; de Boer, J. H. J. Catal. 1965, 4, 319.

Table 2. NH3 Adsorption Amount at $P/P_0 = 0.027$, $V_{NH_3,s}$,
and Irreversible Surface Area, S_{irr} , under Various
Conditions

evacuation <i>T</i> /K	adsorption <i>T</i> /K	first- run	second- run	irrev. (Langmuir)	S _{irr} m²/g
393	278	40	13	27 (27)	91
	298	41	11	30 (31)	104
	318	42	13	29 (34)	114
473	278	29	12	17 (18)	60
	298	34	9	25 (25)	84
	298 ^a	38	13	25 (25)	b
	318	35	11	24 (24)	81
573	278	16	9	7 (7)	24
	298	15	8	7 (6)	20
	298 ^a	26	10	16 (16)	b
	318	16	8	8 (7)	25

^a After H₂O preadsorption. ^b Not determined.

and H₂O at 298 K on H-Hol after dehydration at various temperatures. Both the first- and second-run adsorption amounts of NH₃ decreased with increase of dehydration temperature, demonstrating that H⁺ content in H–Hol plays an important role in NH₃ adsorption. The smaller difference among the second-run adsorption amounts of NH₃ at various dehydration temperatures indicates that protons contained in H–Hol have a great responsibility for irreversible NH₃ adsorption. Table 2 shows the NH₃ adsorption amounts at 298 K on H–Hol (at $P/P_0 = 0.027$), $V_{\rm NH3,s}$, at various dehydration temperatures. The NH₃ irreversible adsorption amount on H-Hol at a dehydration temperature of 573 K is less than one-fourth of that at a dehydration temperature of 393 K. Since it is not easy to apply an adsorption theory to analysis of NH_3 adsorption isotherms, which contain contributions from both chemisorption and physical adsorption, we only fit the irreversible NH₃ adsorption isotherms with the Langmuir equation (not shown for clarity), whereas the surface area for irreversible NH_3 adsorption, S_{irr} , was calculated from the Langmuir saturated adsorption amount by tentatively using the NH₃ molecular sectional area (0.129 nm²).³³ As shown in Table 2, the Langmuir saturated adsorption amount of NH₃ matches well with $V_{\rm NH_3 s}$. The $S_{\rm irr}$ values at dehydration temperatures of 393 and 473 K are much greater than the S_{BET} values from Ar, N_2 , O_2 , CO, and CO_2 adsorption, revealing a great contribution of chemisorption during NH₃ adsorption.

On the other hand, while the first-run adsorption isotherms of H_2O for dehydration at 393 and 473 K overlap with each other, the second-run adsorption for

⁽³³⁾ Young, D. M.; Crowell, A. D. *The Physical Adsorption of Gases*; Butterworth : London, 1962.

Table 3. H₂O Adsorption Area under Various Conditions

evacuation	adsorption	$S_{\mathrm{BET,H_{2}O}}/m^2/g$			
<i>T</i> /K	<i>T</i> /K	first-run	second-run	irrev.	
393	283	71	53	17	
	298	91	61	30	
	298 ^a	50	Ь	b	
	308	100	73	26	
473	298	92	55	37	
	298 ^a	55	b	b	
573	283	74	46	28	
	298	68	44	23	
	308	75	48	26	

^a After NH₃ preadsorption. ^b Not determined.

dehydration at 473 K is slightly smaller than that for dehydration at 393 K, indicating that the dehydrated sites at 473 K are recoverable on readsorption of H₂O possibly due to dissociative adsorption. In contrast to the case of NH₃ adsorption, the reduction in the firstrun H₂O adsorption amount between dehydration temperatures of 393 and 573 K is almost the same as that in the second-run adsorption amount, indicating that high-temperature dehydration has a smaller effect on the reduction of irreversible adsorption of H₂O. Table 3 shows the S_{BET,H2O} values from H₂O adsorption at 298 K after dehydration at various temperatures. The $S_{\text{BET,H}_2\text{O}}$ values from the second-run H₂O adsorption isotherms at dehydration temperatures of 573 K are even smaller than the $S_{t,ext}$ values from N₂ adsorption, reflecting the important role of surface H⁺ sites on H–Hol in H₂O adsorption. Since the crystal structure is not greatly changed by dehydration until 673 K, as shown by the XRD result, the tunnel porous structure of H-Hol may not significantly change until 673 K. The small H₂O adsorption at the dehydration temperature of 573 K implies the disappearance of H₂O dissociative adsorption sites due to a partial rearrangement of the H-Hol surface by certain valence transformation of surface Mn ions (Mn(IV) \rightarrow Mn(III)).

Figure 6 shows the NH₃ and H₂O adsorption isotherms at 298 K on H₂O- and NH₃-preadsorbed H-Hol, respectively. Preadsorption of H₂O on H-Hol dehydrated at 473 K slightly enhanced the weak NH₃ adsorption, leading to the second-run NH₃ adsorption amount which is the same as that at dehydration temperatures of 393 K, but had almost no effect on irreversible NH₃ adsorption. This result correlates with the above results, in which dehydration at 473 K leads to detachment of one part of weak H⁺ sites on H-Hol, which can be reversibly recovered. Readsorption of H₂O produces weak H⁺ sites by dissociative adsorption for NH₃ adsorption, whereas one part of the strong H⁺ sites is irreversibly lost by surface rearrangements due to Mn ion valence changes at dehydration temperatures of 473 K. On the other hand, preadsorption of H₂O on H-Hol dehydrated at 573 K did not increase the weak NH₃ adsorption (the second-run adsorption) while largely enhancing the irreversible NH₃ adsorption, indicating that, by dehydration at 573 K, the weak H⁺ sites disappear by surface rearrangements while one part of the dehydrated sites from strong H⁺ sites can still be recovered by readsorption of H₂O. In addition, the amount of irreversible NH₃ adsorption on H₂O-preadsorbed H-Hol after dehydration at 573 K is still smaller than that on H-Hol dehydrated at 473 K, implying that one part of the strong NH₃ adsorption sites is also irreversibly lost by

Figure 6. Comparison of NH₃ adsorption isotherms at 298 K on fresh and H₂O preadsorbed H–Hol after evacuation at (a) 473 and (b) 573 K, respectively, and those of H₂O at 298 K on fresh and NH₃ preadsorbed H–Hol after evacuation at (c) 393 and (d) 473 K, respectively. \blacksquare , \Box , \Box : first-run, second-run, and irreversible adsorption without H₂O or NH₃ preadsorption, respectively. \bullet , \bigcirc , \odot : first-run, second-run, and irreversible adsorption with H₂O or NH₃ preadsorption, respectively.

dehydration at 573 K. When NH₃ was preadsorbed on H-Hol dehydrated at 393 K, the H₂O adsorption amount was smaller than that of the second-run adsorption without NH₃ preadsorption. This decrease in H₂O adsorption is ascribed to NH₃ occupying weak H⁺ sites, which will be lost by dehydration at 473 K and is reproducible by H₂O readsorption, because the decrease in the second-run H₂O adsorption by NH₃ preadsorption on H-Hol dehydrated at 393 K (11 m²/g from Table 3) is similar to twice the difference of $S_{\text{BET},\text{H}_2\text{O}}$ from the second-run H₂O adsorption at dehydration temperatures between 393 and 473 K (6 m²/g from Table 3). However, the H₂O adsorption isotherm on H-Hol preadsorbed by NH₃ overlaps very well with the secondrun H₂O adsorption without NH₃ preadsorption on H-Hol dehydrated at 473 K. This phenomenon suggests that H₂O cannot be inserted into the innermost H⁺ sites in the tunnel where NH₃ can be strongly adsorbed.

Relationship of NH₃ and H₂O Adsorption with Adsorption Temperature. Figure 7 shows NH₃ and H₂O adsorption isotherms on H–Hol at various adsorption temperatures. Increasing the adsorption temperature in the range of 278–318 K gradually increased not only the first-run but also the second-run NH₃ adsorption, indicating that even second-run NH₃ adsorption, indicating that even second-run NH₃ adsorption is partially specific. Calorimetric results show that the initial second-run NH₃ adsorption heat can be as high as 80–90 kJ/mol,³⁴ much more than the condensation heat of NH₃ (19.9 kJ/mol at 298 K³⁵), reflecting its property of specific adsorption. On the other hand, while

⁽³⁴⁾ Wang, Z.-M.; Kanoh, H. unpublished results.

⁽³⁵⁾ Handbook of Chemistry and Physics, 76th ed.; David, R. L., Ed.; CRC Press: Boca Raton, 1995; pp 6–116.

Figure 7. Adsorption isotherms for NH₃ at 278 (\bullet , \bigcirc), 298 (\blacksquare , \Box), and 318 K (\blacktriangle , \triangle) and those for H₂O at 283 (\bullet , \diamond), 298 (\blacksquare , \Box), and 308 (\blacktriangledown , \bigtriangledown) K on H–Hol after evacuation at (a) 473 and (b) 573 K for NH₃ and (c) 473 and (d) 573 K for H₂O. The solid and unfilled symbols represent first- and second-run adsorption, respectively.

the same specific properties of the first- and second-run $\rm H_2O$ adsorption were observed on H–Hol dehydrated at 473 K, the $\rm H_2O$ adsorption on H–Hol dehydrated at 573 K did not change significantly with adsorption temperature. This result coincides with those in the above section, further indicating that weak H⁺ sites disappear by dehydration at 573 K and that the innermost strong H⁺ sites are not accessible to H₂O adsorption.

As shown in Tables 2 and 3, the irreversible adsorption of NH₃ and H₂O basically increased with increase of adsorption temperature, indicating that adsorption of NH_3 or H_2O may be controlled by an activation adsorption to expand the lattice structure due to formation of larger NH_4^+ or H_3O^+ as well as diffusion resistance along the tunnel pore structure. Figure 8 shows the time-courses of first-run NH₃ adsorption at 283 and 298 K on H-Hol dehydrated at 393 K. A common adsorption rate was observed at the initial adsorption stages (t < 100 s) for the two adsorption temperatures. However, a difference in adsorption rate became apparent after t = 100 s. The higher adsorption temperature accelerates NH₃ adsorption, resulting in a higher adsorption amount with time. The change in the time course of NH₃ indicates that two sub-stages exist for NH₃ adsorption on H–Hol: one is the initial stage occurring at the external surface or near the entrance, and the other is the NH₃ insertion stage into the intratunnel structure, which is the more ratedetermining process.

FT-IR Observation of NH₃ Adsorption Sites on Repeated Adsorption–Desorption Cycling. Figure 9 shows the NH₃ adspecies in the range around 1400 cm⁻¹ under various conditions (the detailed description on the conditions is given in the Experimental Section).

Figure 8. Time-courses of first-run NH_3 adsorptions at 283 (\bigcirc) and 298 (\square) K with Pe = 2 kPa on H–Hol dehydrated at 393 K.

After evacuation of H-Hol at 393 K (condition a), a small sharp peak at 1420 cm⁻¹ was observed. Because this band always appeared after the same procedure for several different batches of H-Hol samples, we suppose that it came from some contaminants, e.g., some adsorbed NH₄⁺ species or other adspecies. NH₃ adsorption on H-Hol dehydrated at 393 K (condition b) gave a sharp peak of great intensity at 1400 cm⁻¹, which can be ascribed to an NH4⁺ species.³⁶ This peak was not seriously enhanced by rising NH₃ gas pressure (condition c) but gradually decreased by evacuation at 393 and 473 K (conditions d and e). The position of NH_4^+ species was constant after desorption at 393 K but shifted to a higher band position after that at 473 K. NH₃ readsorption (condition f) on H-Hol successively evacuated at 473 K again gave a sharp peak at 1400 cm^{-1} and subsequent desorption (condition g) at 473 K retained the same peak shapes and positions as that of condition e. Thus, NH₃ adsorption sites to form NH_4^+ species are not changed and NH₃ can be repeatedly adsorbed on H-Hol at a dehydration temperature below 473 K although the irreversible NH₃ adspecies cannot be completely desorbed. However, NH₃ adsorption on H-Hol successively evacuated at 573 K leads to only a slight increase in the peak at 1420 cm⁻¹ instead of a peak at 1400 cm⁻¹ (condition i). A peak at 1600 cm⁻¹, which can be assigned to an NH₃ adspecies on Lewis acid sites,³⁶ also concurrently appeared. With the increase in the number of repeated cycling of NH₃ adsorption-desorption (at 573 K), the peak at 1420 cm^{-1} gradually decreased in intensity in concurrence with the gradual increase in intensity of the peak at 1600 cm^{-1} and finally disappeared (conditions j-p). Thus, the change in NH₃ adsorption sites on repeated adsorption-desorption (at 573 K) reflects the gradual diminishing of H⁺ sites on H-Hol and their transformation to Lewis acid sites, suggesting easy rearrangement of the H–Hol surface at a dehydration temperature of 573 K. The appearance of two $-NH_4^+$ adspecies implies the pres-

⁽³⁶⁾ Tsyganenko, A. A.; Pozdnyakov, D. V.; Filimonov, V. N. J. Mol. Struct. 1975, 29, 299.

Figure 9. FT-IR observation on repeating NH_3 adsorption-vacuum evacuation. Conditions (a-s) are the same as those described in the Experimental Section.

ence of two NH_3 adsorption sites on H–Hol: the comparatively weak H^+ sites exist in large amounts but disappear on evacuation above 573 K, and the stronger, less plentiful H^+ sites can be retained at a higher temperature. As the result of sufficient dehydration, surface rearrangement, and partial or complete destruction of the hollandite structure, the NH_3 adsorption sites are almost entirely lost and NH_3 adspecies become obscure by evacuation above 673 K (conditions q to s).

Schematic Model for the Structural and Surface Properties of H-Hol and Their Changes on Increasing Temperature. From the above adsorption results, a schematic model of the pore structure of H–Hol for gas adsorption is shown in Figure 10a. Although the crystalline pore opening of H-Hol is estimated as 0.46 nm,^{21,22} we believe that this pore opening is the distance between the centers of oxygen ions of the two neighboring MnO₆ octahedra on each side of the (2×2) tunnel. The dimension of 0.216 nm obtained by subtracting the diameter of O^{2-} ions (0.244) nm for a three coordination number³⁵) from 0.46 nm is small enough to exclude Ar, N₂, O₂, CO, and CO₂ with dynamic molecular diameters between 0.33-0.364 nm³⁷ from the tunnel. Although the value of 0.216 nm depends on the O^{2-} radius value in the literature, it is rather close to the dynamic diameters of H₂O and NH₃ $(H_2O, 0.265 \text{ nm}; \text{NH}_3, 0.26 \text{ nm}^{37})$. This may explain why adsorption, especially physical adsorption of H₂O and NH₃, into the tunnel is not easy but requires the aid of stronger irreversible adsorption. Hence, adsorption isotherms for NH₃ and H₂O previously shown may not reflect a real equilibrium adsorption but a quasiequilibrium adsorption. The difference in H₂O and NH₃ adsorption can be ascribed either to a thermodynamic disadvantage due to the weaker specific interaction or a higher activation energy to form H_3O^+ than to form NH₄⁺ or to a larger diffusion resistance along the tunnel

(b)

Figure 10. (a) Molecular adsorption schematic of N_2 , O_2 , Ar, CO, CO₂, H₂O, and NH₃ on H–Hol and (b) dehydration schematic of H–Hol with increasing temperature.

structure due to a larger molecular size of H_2O in comparison with NH_3 . Strong acid-base interactions give NH_3 molecules great accessibility to the innermost H^+ sites with strong adsorption energy. Formation of NH_4^+ due to NH_3 adsorption brings about expansion of the lattice structure,²⁹ leading to NH_3 being more easily transported along the one-dimensional tunnel.

Figure 10b shows a schematic model describing the dehydration process of H–Hol. As the dehydration amount of H–Hol from room temperature to 673 K is much larger than the theoretical H_2O amount from the

⁽³⁷⁾ Breck, D. W. Zeolite Molecular Sieves – Structure, Chemistry, and Use, Wiley-Interscience: New York, 1974.

lattice protons, it seems from the H₂O and NH₃ adsorption results that lattice protons desorb sequentially from weaker to stronger intensity protons together with included water. Dehydration of H-Hol is unlike that in other metal oxides such as silica, alumina, and so on, which lose their physisorbed H₂O first and then surface hydroxy groups next with increasing temperature. Under the mild dehydration condition at 393 K, most of the water is desorbed, leaving the largest amount of exposed H^+ on H-Hol, on which the largest amount of NH₃ can be adsorbed irreversibly. By dehydration at 473 K, detachment of water and external H⁺ sites becomes sufficient to give rise to some coordinately unsaturated (cus) sites on the external surface of H–Hol, which can then serve as new dissociative sites for water adsorption. Dehydration at 573 K leads to rearrangement of surface sites on the external surface, namely, the disappearance of cus sites at the external surface while producing some cus sites inside the tunnel structure. The cus sites near the entrance will then be dissociative sites for H₂O adsorption and NH₃ adsorption sites after rehydration. Finally, dehydration above 673 K leads to sufficient disappearance of lattice protons and partial or complete collapse of the crystal structure, thus bringing about minimal NH₃ adsorption.

Conclusion

1. Adsorption results show that N_2 , O_2 , Ar, CO, and CO_2 with molecular diameters above 0.33 nm are excluded from the tunnel structure of H–Hol. However,

 H_2O and NH_3 can be inserted into the tunnel structure with the aid of strong interaction with the surface of H–Hol. These results indicate that the effective pore opening of H–Hol for gas adsorption is around 0.265 nm, i.e., the molecular diameter of H_2O .

2. Dehydration decreases not only the adsorption amount of NH_3 but also that of H_2O , indicating that H^+ contents in H–Hol play an important role in both NH_3 and H_2O adsorption. Strong interaction between NH_3 or H_2O and the H^+ sites contained in H–Hol leads to a slow adsorption process. Time-courses of NH_3 adsorption show that NH_3 is adsorbed on the external surface or the tunnel entrance of H–Hol at first and then inserted into the inner part of the tunnel; the insertion stage is the more rate-determining process.

3. Adsorption and FT-IR results show that evacuation at a higher temperature leads to dehydration of physisorbed water in concurrence with a stepwise disappearance of proton sites on H–Hol. While one part of the dehydrated sites can become the dissociative sites for H₂O adsorption and recovered for NH₃ adsorption after rehydration, some proton sites are irreversibly lost due to surface rearrangement by valence change of Mn ions.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the special Coordination Fund (Frontier Ceramics Project) of the Science and Technology Agency of Japan.

CM0007609